Найти интервал сходимости ряда и исследовать его сходимость на концах найденного интервала 
Решение: В общий член степенного ряда входит множитель , обеспечивающий знакочередование. Алгоритм решения полностью сохраняется, но при составлении предела мы игнорируем (не пишем) этот множитель, поскольку модуль уничтожает все «минусы».
Найдем интервал сходимости данного ряда. Используем признак Даламбера:

Составляем стандартное неравенство:
Ряд сходится при 
Слева нам нужно оставить только модуль, поэтому умножаем обе части неравенства на 5:

Теперь раскрываем модуль уже знакомым способом:

В середине двойного неравенства нужно оставить только «икс», в этих целях из каждой части неравенства вычитаем 2:

– интервал сходимости исследуемого степенного ряда.
Исследуем сходимость ряда на концах найденного интервала:
1) Подставляем значение в наш степенной ряд :
Будьте предельно внимательны, множитель не обеспечивает знакочередование, при любом натуральном «эн» . Полученный минус выносим за пределы ряда и забываем про него, поскольку он (как и любая константа-множитель) никак не влияет на сходимость или расходимость числового ряда.
Итак, требуется исследовать на сходимость числовой ряд . Здесь проще всего использовать предельный признак сравнения и сравнить данный ряд с расходящимся гармоническим рядом, или
Используем интегральный признак.

Подынтегральная функция непрерывна на .

Таким образом, полученный числовой ряд расходится вместе с соответствующим несобственным интегралом.
2) Исследуем второй конец интервала сходимости.
При 
Используем признак Лейбница:
– Ряд является знакочередующимся.
– – члены ряда убывают по модулю. Каждый следующий член ряда по модулю меньше, чем предыдущий, значит, убывание монотонно.
Вывод: ряд сходится
Рассматриваемый числовой ряд не является абсолютно сходящимся поскольку – расходится (по доказанному).
Ответ: – область сходимости исследуемого степенного ряда, при ряд сходится только условно.
Вы можете заказать решение любых задач по математическому анализу
Примеры на сходимость функциональных рядов
|