18:00
Разложение функции в ряд Фурье в maple

Методы решения математических задач в Maple

С. Е. Савотченко, Т.Г. Кузьмичева

Разложить в ряд в Maple

В Maple нет команды, позволяющей производить разложение функции в тригонометрический ряд Фурье. Однако можно создать собственную процедуру разложения ряд Фурье. Пусть требуется разложить на интервале [x1, x2] 2l-периодическую функцию f(x). Тогда ряд Фурье имеет вид:

,

где l=(x2- x1)/2;

; ; .

Смотри методика с подробно решенными примерами разложения  функции в ряд Фурье

Получить первые n членов ряда Фурье можно с помощью следующей процедуры:

> fourierseries:=proc(f,x,x1,x2,n) local k, l,

a, b, s;

> l:=(x2-x1)/2;

> a[0]:=int(f,x=x1..x2)/l;

> a[k]:=int(f*cos(k*Pi*x/l),x=x1..x2)/l;

> b[k]:=int(f*sin(k*Pi*x/l),x=x1..x2)/l;

> s:=a[0]/2+sum(a[k]*cos(k*Pi*x/l)+

b[k]*sin(k*Pi*x/l), k=1..n);

> end;

Порядок обращения к этой процедуре такой: fourierseries(f,x,x1,x2,n), где f – имя функции, разложение которой требуется найти, где х – имя независимой переменной, где х1, x2 – интервал разложения, где n – число членов ряда.

 

Сначала полностью наберите процедуру fourierseries, предложенную выше в теоретической части.

> f:=x/2:x1:=0:x2:=2*Pi:

> fr:=fourierseries(f,x,x1,x2,6);

> plot({fr,f}, x=x1..x2, color=[blue,black],

thickness=2, linestyle=[3,1]]);

Пунктирной линией изображен график n-частичной суммы ряда Фурье, а сплошной – самой функции. По виду n-частичной суммы ряда Фурье в данном примере легко установить общий вид этого ряда:

.

 

  1. Разложить в ряд Фурье функцию f(x)=x/2 с периодом 2p на интервале [0; 2p ], удерживая 6 членов ряда. Построить на одном рисунке графики функции и ее n-частичной суммы ряда Фурье.
  2. Разложить несколько раз в ряд Фурье функцию

с периодом 2p на интервале [p ;- p ], удерживая 2, 4 и 8 членов ряда. Построить на одном рисунке графики функции и ее n-частичных сумм ряда Фурье.

 

> f:=exp(-x);x1:=-Pi;x2:=Pi:

> fr1:=fourierseries(f,x,x1,x2,2):

> fr2:=fourierseries(f,x,x1,x2,4):

> fr3:=fourierseries(f,x,x1,x2,8):

> plot({f,fr1,fr2,fr3},x=x1..x2,color=[black, blue, green, red], thickness=2, linestyle= [1,3,2,2]);

Сплошной линией изображен график функции, пунктирными – графики n-частичных сумм ряда Фурье. Видно, что чем больше слагаемых ряда удерживать, тем ближе расположен график суммы ряда к графику самой функции.

Категория: Ряд Фурье | Просмотров: 4363 | Добавил: Admin | Теги: ряд Фурье | Рейтинг: 0.0/0
Всего комментариев: 0
avatar