19:37
Множество Парето
|
Множество ПаретоПусть на плоскости (или в пространстве) дано некоторое множество точек M. Точка называется внутренней точкой множества М, если существует такая окрестность этой точки, которая целиком состоит из точек данного множества. Если же в любой окрестности точки имеются точки, как принадлежащие, так и не принадлежащие множеству М, то точка называется граничной точкой множества М. Совокупность всех граничных точек данного множества М называется его границей.Иллюстрацией служит рис. 1.
Если множество М не содержит ни одной своей граничной точки, то оно называется открытым (то есть любая точка открытого множества является внутренней). Если множество М содержит все свои граничные точки, то оно называется замкнутым. В дальнейшем будут рассматриваться только замкнутые множества. Если множество М не содержит ни одной своей граничной точки, то оно называется открытым (то есть любая точка открытого множества является внутренней). Если множество М содержит все свои граничные точки, то оно называется замкнутым. В дальнейшем будут рассматриваться только замкнутые множества. Рассмотрим на плоскости множество М. Пусть Р — произвольная точка этого множества. Возможно ли во множестве М перемещение точки Р в близкую ей точку так, чтобы при этом увеличились обе ее координаты? Если Р — внутренняя точка, то такое перемещение возможно. Если Р — граничная точка, то такое перемещение не всегда возможно. Иллюстрацией служит рис. 2 Требуемое перемещение точек P1, P2 , P3,P4 возможно, а ни одна из точек как отрезков P5P6 и P7P8, так и дуги P6P7 такому перемещению подвергнута быть не может. Действительно, при перемещении любой точки
Таким образом, каждая точка множества М попадает в один из трех следующих классов.
Множество точек третьего класса называют границей (множеством) Парето данного множества М. Часто говорят, что граница Парето множества М — это множество точек, из которых нельзя переместиться на «север», «восток» или «северо-восток», оставаясь во множестве М. Считается, что наилучшие решения многокритериальной задачи следует искать именно среди множества Парето. Поэтому построение множества Парето нередко считают первым необходимым шагом в решении любой многокритериальной задачи. |
|
Всего комментариев: 0 | |