13:17
Числовые характеристики дискретных случайных величин

Как найти математическое ожидание дискретной случайной величины

 

Установленный закон распределения полностью характе­ризует случайную величину. Однако часто используются чи­словые характеристики случайной величины, которые дают некоторое осредненное описание случайной величины, получа­емое на базе закона ее распределения.

 

Математическое ожидание дискретной случайной величины

 

Пусть случайная величина Х может принимать значения x1, x2, ... , xn c вероятностями соответственно p1, p2, …, pn.

Определение 1. Математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на их вероятности:

Из этого определения следует, что математическое ожи­дание есть некоторая постоянная (неслучайная) величина. Ве­роятностный же смысл математического ожидания состоит в том, что оно приближенно равно (в особенности для большого числа испытаний) среднему арифметическому значений слу­чайной величины. Это хорошо видно в случае, когда вероятнос­ти всех возможных значений дискретной случайной величины равны: pi = р = 1/n; из формулы (18.5) получаем

 

Пример 1. Найти математическое ожидание количества оч­ков, выпадающих при бросании игральной кости.

Решение. Выпадение каждой грани кубика от одного очка до шести имеет одинаковую вероятность р = 1/6. Следова­тельно, по формуле (18.6) получаем искомое математическое ожидание:

 

 


Категория: Теория вероятности | Просмотров: 3757 | Добавил: Admin | Теги: дискретной случайной величины, Числовые характеристики дискретных, математическое ожидание | Рейтинг: 0.0/0
Всего комментариев: 0
avatar
close