Операции над множествами

  • Объеденением множеств $A$ и $B$ называется множество $$A∪B=\left \{ x|(x∈A)∨(x∈B)\right \}$$
  • Пересечением множеств $A$ и $B$ называется множество $$ A∩B=\{x|(x∈A)∧(x∈B)\} $$
  • Множество, стостоящее из всех элементов множества $A$, не принаждлежащих множеству $B$, называется разностью множеств $A$ и $B$: $$ A\setminus B=\{x|(x\in A)\wedge (x\notin B)\}.$$
    • Если $A⊂B$ , то $B\setminus A$ называют дополнением множества $A$ до множства $B:A'_B.$ 
    • Если, в частности, $A−$ подмножество некоторого универсального множества $U$, то разность $ U\setminus A $ обозначается символом $\bar{A}$ или $A′$ и называется дополнением множества $A$ (до множества $U$).

 

  • Симметрической разностью множеств $A$ и $B$ называют множество $AΔB$, состоящее из тех и только тех элементов, которые принадлежат только одному из множеств $A$ или $B$, то есть $$ AΔB=(A ∖ B)∪(B ∖ A). $$

 

Примеры операций над множествами

Пример 1. Даны множества $A=\{3,5,7,8,9\}$ и $B=\{2,3,7,8, 10\}$

Найти:  $ A ∩ B $,   $ A ∪ B $ ,   $ A & ... Смотреть решение »

Категория: Теория множеств | Просмотров: 16790 | Добавил: Admin | Дата: 05.07.2016 | Комментарии (0)