Контрольная работа по дисциплине “Методы оптимальных решений”

Задание 1  Найти область решений и область допустимых решений системы неравенств:

$\left\{\begin{matrix}x_1-x_2\leq 1\\ x_1-2x_2\leq 1\\x_1\leq 0.25\end{matrix}\right..$

Решение.

Построим область решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Построим уравнение x1-x2 = 1 по двум точкам.
Для нахождения первой точки приравниваем x1 = 0. Находим x2 = -1. Для нахождения второй точки приравниваем x2 = 0. Находим x1 = 1. Соединяем точку (0;-1) с (1;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 • 0 - 1 • 0 - 1 ≤ 0, т.е. x1-x2 - 1≤ 0 в полуплоскости ниже прямой.
Построим уравнение x1-2x2 = 1 по двум точкам.
Для нахождения первой точки приравниваем x1 = 0. Находим x2 = -0.5. Для нахождения второй точки приравниваем x2 = 0. Находим x1 = 1. Соединяем точку (0;-0.5) с (1;0) прямой линией. Определ ... Смотреть решение »

Категория: Линейное программирование | Просмотров: 8790 | Добавил: Admin | Дата: 22.04.2015 | Комментарии (0)

close