22:28
критерий соглаия Пирсона
|
Критерии согласияДля проверки соответствия эмпирического распределения теоретическому (гипотезы) можно наложить на гистограмму теоретическую кривую (рис. 6).
При этом неизбежно обнаружатся расхождения, либо случайные, связанные с ограниченным объемом наблюдений, либо свидетельствующие о неправильном подборе выравнивающей функции (гипотезы). Для ответа на этот вопрос используют так называемые «критерии согласия». Для этого вводится случайная величина U, характеризующая расхождение эмпирического и теоретического распределений в предположении истинности теоретического распределения. Мера расхождения U выбирается таким образом, чтобы функция ее распределения не зависела от вида выравниваемого (эмпирического) распределения и достаточно быстро сходилась по числу наблюдений n к предельной функции . Затем определяется фактическая степень расхождения u и оценивается вероятность Малая величина говорит о том, что полученное расхождение u в силу чисто случайных причин маловероятно, и теоретическое распределение плохо согласуется с эмпирическим. Однако, большие вероятности не могут считаться исчерпывающим доказательством истинности теоретического закона распределения и свидетельствуют лишь об отсутствии оснований его отвергнуть. Иногда поступают иначе: заранее рассчитывают меру расхождения , которая может быть превышена с указанной малой вероятностью, и при рассматриваемое теоретическое распределение отвергают. Существует множество критериев согласия, среди которых наиболее употребительными являются критерий Пирсона и критерий Колмогорова-Смирнова. В критерии согласия Пирсона мерой расхождения теоретического и эмпирического распределений является взвешенная сумма квадратов отклонений (27) где k – число интервалов разбиения значений случайной величины, – количество наблюдений, попавшее в i-й интервал, – теоретическая вероятность появления значения из i-го интервала, n – общее число наблюдений. В практических задачах рекомендуется иметь в каждом интервале разбиения не менее 5-10 наблюдений [3]. Обозначим через t число независимых связей, наложенных на вероятности . Их общее число равно количеству характеристик теоретического распределения, подбираемых по опытным данным, плюс единица (условие нормировки ). Таким образом, схема применения критерия к оценке согласованности теоретического и эмпирического распределений сводится к следующему: 1) Определяется мера расхожденияпо формуле (27). Онлайн сервис: решение задач по статистике |
|
Всего комментариев: 0 | |